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ABSTRACT

In this work we bring together classical mechanism theory
with recent works in the area of Computer Aided Geometric De-
sign(CAGD) of rational motions as well as curve approximation
techniques in CAGD to study the problem of mechanism mo-
tion approximation from a computational geometric viewpoint.
We present a framework for approximating algebraic motions of

spherical mechanisms with rational B-Spline spherical motions.

Algebraic spherical motions and rational B-spline spherical mo-
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approximation using spherical NURBS motion by combining
NURBS geometry with kinematic geometry of spherical mech-
anisms. From the viewpoint of mechanism synthesis, the ideas
presented in this paper are extensions of the work of Gupta and
Roth (1975) on kinematic approximation of circles and straight
lines, the series of work of Ravani and Roth (1983, 1984), Bod-
duluri and McCarthy (1992), Larochelle and McCarthy (1994)
on algebraic motion synthesis using kinematic mapping, as well
as the work of Liu and Angeles (1992a, 1992b) on planning

tions are represented as algebraic curves and rational B-Splineglobal properties of a mechanism motion for optimization of
curves in the space of quaternions (or the image space). Thusfunction generating mechanisms.

the problem of motion approximation is transformed into a curve

The paper is organized as follows. Section 1 reviews how

e}pproximation prob!em, where concepts and techniques Fn the spherical displacements can also be represented projectively us-
field of Computer Aided Geometric Design and Computational jn4 homogeneous quaternions. Section 2 presents spherical ratio-

Geometry may be applied. An example is included at the end t0 5| azjer and B-spline motions aeBier and B-spline quater-
show how a NURBS motion can be used for synthesizing spher- nion curves. Section 3 presents algebraic motions of spherical

ical four-bar linkages. mechanisms. Section 4 discusses three motion approximation
problems and presents an example to demonstrate the feasibility
of our approach.

1 INTRODUCTION

Non-Uniform Rational B-Splines, commonly referred to as

NURBS, have become the de facto industry standard for the rep-

resentation, design, and data exchange of geometric information

processed by computers. Recently, it has become apparent tha? SPHERICAL DISPLACEMENTS

NURBS geometry can be extended to kinematic domain for syn-

thesizing NURBS motions of rigid bodies in Euclidean three- spherical kinematics (Yang and Freudenstein, 1964; Ravani and

space (Ge and Ravani, 19944ttkér, 1994; dttler and Wagner, Roth, 1984; Bottema and Roth, 1990; McCarthy, 1990). A

1996; Ge and Kang, 1996; Ge et al., 1997). The purpose of quaternionis a hypercomplex number of the fars qii + qpj +

the present paper is to present a framework for algebraic motion gsk + g4 wherei, j, k are quaternion units. The componegtare

Quaternion algebra allows for an elegant treatment for
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known asEuler parametersf rotation and are given by

1)

qu=s18inY, g2 =ssind, gz =sssing, qs=cosy,

wheres = (s1,%,%3) is the unit vector along the axis of rotation
and® is the angle of rotation. Note that the Euler parameters
satisfy the condition

0 +05+05+05=1, ()

Two rotation quaternion€) = vq andq, represent one and
the same rotation since

[H(Q)] = [H(va)] = V’[H(a)].

The scalaw can thus be considered as a weighting factor for the
rotation. Ravani and Roth (1984) considered the homogeneous
Euler parameter® = vq as defining a pointin a projective three-
space, called thenage spacédenoted ag) of spherical kine-
matics. In this way, an algebraic curve Incorresponds to an
algebraic motion and a polynomial curveincorresponds to a

and the corresponding quaternion is called a unit quaternion. In rational motion.

general, however, one can define a non-unit quaternion using

the homogeneous Euler paramet€rs; (Q1,Q2,Qs,Q4), where
Qi = vg withv > 0.
Let the location of a point in Euclidean three-spded

It is important to point out that although pointsk as well
as spherical displacements can be represented by points in pro-
jective three-space, the geometryR¥ is considered to be flat
while the geometry oF is considered to be spherical or elliptic.

before and after a spherical displacement be represented byFor example, the distance between two po@tsindQj, 1 in X

homogeneous Cartesian vectgrs= (p1,p2,P3,pa) andp =

is defined as the angle between the two lines define@;tgnd

(P1, P2, B3, Pa), respectively. These homogeneous vectors define Q;, 1, see Martinez and Duffy (1995) and Larochelle and Mc-

points in projective three-spa&&. One can associate these vec-
tors with quaternions as well, which maybe referred tpaist
quaternions The point coordinate transformation under a spher-

Carthy (1996).

ical displacement can be represented by the following quaternion3 SPHERICAL NURBS MOTIONS

product:;

p=QpQ” 3)
whereQ* denotes the conjugate of the rotation quateri@aand

B, p are point quaterniofs The quaternion representation can
be recast in 4 4 matrix form as

p=[H(Q)p (4)
where
[H(Q)] =[Q"][Q7]
with (see McCarthy, 1990; Ge, 1994)
Qs—Q3 Q2Q1 Q—Q3 Q2—Q1
QY] = Qs Qu-Q1Q Q= QB QUuU--Q
-Q Q1 QuQs|’ —Q2 Q1 Q4—Qs
—Q1-Q2-Q3Q4 Q1 Q@ Qs Q4( )
5

INote that we use boldface letters to denote both quaternions and vectors.

2

Rational Bézier and B-spline curves, also known as
NURBS? are standard topics in the field of Computer Aided Ge-
ometric Design (Farin, 1993). In this section, we consider the
problem of defining a spherical motion such that its point trajec-
tory is a spherical NURBS curve. The resulting motion is called
aspherical NURBS motioWe first consider the case of rational
Bézier spherical motions. We then discuss how the result can be
extended to rational B-spline spherical motions.

Given a sequence of unit quaternianss well as associated
weightsy; > 0, one can construct homogeneous quaternions by
Qi = vigi. Note that in order to take care of the problem that
bothq; and—q; correspond to the same spherical displacement,
we choose the sign @f such thaty; - gj;1 > 0 where the symbol
“.” represents the usual vector dot product. 8zt quaternion
curve of degrea is given by

Q0= 5 B0, ©)

The quaternion®; are here referred to &ezier control quater-
nions The Bézier polygon defined by theeBier quaternions is
an intrinsic control structure for the resulting motion. The con-
trol structure corresponds to a piecewise rotational métion

2Non-Uniform Rational B-Splines.
3Each motion segment is a pure rotation about a fixed axis.
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After substituting (6) into (3), we obtain the point trajectory
of the corresponding motion as

n n
=2n n n *
p(t) = B'(t)Bj()QipQj- (7)
22, 0P
The point trajectory can also be put irBér form as
2 2 2
P = 5 B(t)a (8)
2
where Bézier control pointsy are
A= Y CICQiPQ; ©
Cl%n i+]=k : .

andC" are binomial coefficients. Thus aBier quaternion curve
of degreen defines a rational &ier spherical motion of degree
2n, for its point trajectories are rationakBier curves of degree
2n.

Writing the Bézier control pointsy in matrix form, we ob-
tain

a = [Hk]p (10)

where

M= Y COlQrIiQy) (12)

1
Cl%n i+]=k

This leads to the following matrix representation of the rational
Bézier motion as defined by the=Bier quaternion curve (6):

2n
[H2"(t)] = k; BZ"(t)[Hi- (12)

Thus the matricefHy] may be referred to aBézier control ma-

trices These matrices are in general not orthogonal and thus
represent affine displacements. They define an affine (or linear) ical four-bar motion can be defined this way.

control structure for the rationale&ier motion. The linear con-
trol structure for rational Bzier motions was first presented by
Jittler and Wagner (1996). The set @n -+ 1) Bézier control
matrices[Hy] are defined byn+ 1) Bézier control quaternions

Qi.

A nth degree B-spline quaternion curve is given by

Q)= 3 NOQ, 13)

with N/'(t) being the B-spline basis. Itis not difficult to show that
the point trajectories of the resulting motion are rational B-spline
spherical curves of degre@m.2Therefore a B-spline quaternion
curve of degree defines a rational &ier spherical motion of
degree 8. In producing an example for this paper, we have
utilized cubic B-spline quaternion curves which have a piece-
wise Bézier form. The standard algorithm for converting the de-
Boor points to the BZier points is directly applicable to B-spline
guaternion curves. The algorithm can also be inverted for cubic
rational B-spline interpolation. These algorithms can be found in
CAGD texts such as Farin (1993) and Piegl and Tiller (1995).

4 ALGEBRAIC SPHERICAL MOTIONS

Let us consider a spherical motion of the moving body such
that two points,p; andp», of the body trace out two separate
algebraic curves on the surface of a unit spher&in These
algebraic curves are given by the following algebraic equations:

(14)

wherer; denote the coefficients or shape parameters of the alge-
braic curvef; = 0. The equation$; = 0 are homogeneous W,

i.e. we havefi(z;) = 2 f (i) wherezis a nonzero scalar arig

is an integer. Substituting (4) into (14), we obtain the following
two homogeneous equations@n

F(Q:pi,ri) =0, 1=12 (15)

Each of the two equations defines an algebraic surface in the im-
age space& and represents the set of all possible spherical dis-
placements that satisfy the algebraic constraint (14). The inter-
section of the two surfaces defines an algebraic quaternion curve
in . This algebraic quaternion curve corresponds to an algebraic
spherical motion such that any point of the moving body traces
out an algebraic path.

For instance, the quaternion curve representing a spher-
Lpt =
(pi,1, Pi,2, Pi.3, Pia) be the homogeneous vector representing the
locations of the moving pivots on the moving unit sphere, and let
m; = (M. 1,m 2,m 3,m 4) be homogeneous vector representing
the locations of the fixed pivots on the fixed unit sphere. iet
denote the angular lengths of the driving and driven links. The
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moving pivots are required to stay on circular paths, which are
given by

fi = piami 1 + Pi2my 2 + Pism 3 — Piamiscosp =0, i=1,2

(16)
The corresponding quaternion surfaceX iare given by the fol-
lowing homogeneous quadric equations

Q'[R(pi,m)]Q=0, i=1,2, (17)

where the coefficient matricés (pi,m;)] are given by

Pi, 1M, 1 — Pi,2Mi 2 — Pi,3Mi,3— Pi,4Mi 4 COSP;
Pi,2My 1+ Pi,aM 2
Pi,3My 1+ Pi,1Mi.3
Pi,2Mi 3— Pi,3Mi,2
Pi,2My 1+ Pi,am; 2
—Pi,1Mi 1+ Pi,2Mi 2— Pi 3M; 3— Pi 4M; 4 COSP;
Pi,3M; 2+ Pi2M; 3
Pi,3Mi,1—Pi,aMmi 3
Pi,3M; 1+ Pi,ami 3
Pi,3M; 2+ Pi2M; 3
—Pi,1Mi 1— Pi,2Mi 2+ Pi 3M; 3— Pi 4M; 4 COSP;
Pi, 1M 2—Pi,2Mi 1
Pi,2my 3—Pi,3m 2
Pi,3Mi,1—Pi,1M,3
Pi,1Mi,2— Pi,2Mi,1
Pi, 1M, 14 Pi,2Mi, 2+ Pi,3Mi,3— Pi,4Mi .4 COSP;

[Fi]

(18)

The intersection of these two surfaceszinis the image curve

of a spherical four-bar motion. The curve is a quartic algebraic

curve of the first kind and the topological structure of the curve is

directly related to the linkage type such as Grashof, non-Grashof,
foldable linkages (Ge and McCarthy, 1991; Chase and Mirth,

1993).

5 ALGEBRAIC MOTION APPROXIMATION

In the image spacg, the kinematic problem of algebraic
motion approximation becomes a geometric problem of curve
fitting in Z. In this section, we discuss the following three prob-
lems related to algebraic motion approximation:

1. Approximation of a given spherical four-bar motion with a
NURBS motion;

Approximation of a NURBS motion with a spherical four-
bar motion;

Constrained NURBS motion approximation. The NURBS
motion is required to fit a set of given spherical displace-
ments while maintaining the kinematic structure of a spher-
ical four-bar motion.

2.

3.

All three problems can be solved as curve-fitting problems in the
Image Space.

Essential to the motion approximation process is the estima-
tion of the approximation error between the NURBS motion and
the four-bar motion. There are two ways to estimate the error in
the image spacg&. One is to calculate a sequence of points on
the B-spline quaternion curve and then estimate the normal dis-
tance from each point to the image curve of a spherical four-bar
motion. Calculation of a sequence of points on a B-spline curve
is a routine task in computer graphics for rendering the curve.
It can be done efficiently and reliably. The problem of calculat-
ing the normal distance from a point to the image curve is more
challenging but has been effectively solved by Ravani and Roth
(1983, 1984). The resulting algebraic curve-fitting technique has
been refined and extended by Bodduluri and McCarthy (1992),
Ge and Ravani (1993), and Larochelle and McCarthy (1994).

Another way to estimate the approximation error is to gen-
erate a sequence of points on the image curve of the four-bar mo-
tion and then estimate the normal distance from each point to the
B-spline quaternion curve. Calculation of a sequence of points
on an algebraic curve is in general more difficult than that for a
parametric curve due to the algebraic form as well as the topolog-
ical structure (such as possible multiple branches and self inter-
sections) of the algebraic curve (Arnon, 1983). In the case of the
image curve of a spherical mechanism’s motion, the problem of
calculating a sequence of points on the curve is equivalent to the
position analysis of the mechanism motion and can be solved us-
ing the loop-closure equations of the mechanism (see McCarthy,
1990). Once a sequence of image points has been generated, one
can take advantage of the convex-hull and subdivision property
of a B-spline curve to develop reliable and efficient methods for
estimating the error. Since the metric geometry @ spherical
“flat” algorithms in CAGD for distance calculation have to be
modified to take into account the geometnzof

The solution to the first problem would provide approxi-
mate piecewise rational parameterizatitor algebraic motions
of a spherical four-bar. This problem can be solved with a num-
ber of NURBS curve fitting techniques in CAGD including in-
terpolation and approximation (see Chapter 9 of Piegl and Tiller,
1995).

In the second problem, we use a NURBS motion to plan a
desired motion to include global properties such as a Grashof
linkage or to eliminate order or branch defect problems. Liu and
Angeles (1992a, 1992b) were probably the first who used spline
curves to plan input-output curves for optimization of function
generating mechanisms. Since the topological structure of an al-
gebraic quaternion curve of a spherical four-bar motion has been
classified and has been shown to be directly related the linkage
type, one can plan a NURBS motion to capture desired topo-
logical structure of a desired four-bar motion. After a B-spline
guaternion curve has been planned, one can obtain an approx-
imating algebraic quaternion curve using the curve-fitting tech-
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nique developed by Ravani and Roth and refined by McCarthy,
Bodduluri, and Larochelle.

The quality of the above approximation is expected to be de-
pendent on the shape of the given NURBS spherical motion. This
is because while NURBS curves are free-form curves that can be
used to model any curve shape, the image curve of a spherical
four-bar is constrained by the kinematic structure of a four-bar
closed-chain. This gives rise to the third problem in algebraic
motion approximation, i.e. how to fit a small number of data
points with a NURBS motion while maintaining the kinematic
constraints of a four-bar motion. This problem may be solved by
first finding a NURBS motion that fits the given data with more

control points than necessary and then determining the extra con-

trol points such that the final NURBS curve fits the kinematic
constraints of a four-bar motion.

Figure 1. A spherical four-bar linkage that approximates a set of 10
spherical displacements.

We now present an example that demonstrates the feasibil-

ity of our approach. First, we synthesize a spherical four-bar
that approximates ten coupler positions. The resulting linkage
is a non-Grashof double rocker with an average position error
of 0.0039 and is shown in Figure 1. We then used a NURBS

Figure 2. A spherical four-bar linkage that approximates a set of 37
spherical displacements.

inal positions. For example, in the 37 position case, positions
2 — 4 describe the desired motion from position 1 to position 2
of the 10 original positions. The result is the elimination of the

order defect in this example.

CONCLUSIONS

In this paper we presented a framework for combining re-
cent developments in the fields of Computer Aided Geomet-
ric Design with classical kinematic geometry of spherical mo-
tions and mechanisms to study the problem of spherical mo-
tion approximation from a computational geometric viewpoint.
A quaternion-based representation of spherical displacements is
used to transform the kinematic problem of motion synthesis into
a geometric problem of curve design. In this way, algebraic
motions of spherical mechanisms are represented by algebraic
guaternion curves and NURBS spherical motions are represented
by B-spline quaternion curves. The problem of algebraic motion
approximation is studied as that of algebraic curve approxima-
tion in the space of quaternions. The initial ideas presented here

motion to interpolate the 10 coupler positions and generated 37 forms a basis for future research in developing computational-

coupler positions on the NURBS motion and designed a mech-
anism for these 37 positions. The resulting mechanism, shown
in Figure 2, is a non-Grashof double rocker with an average po-

geometric methods for mechanism design and analysis.

sition error of 00062. Link lengths for both solutions are listed ACKNOWLEGEMENT

in Table 1. Note that by examining the coupler curve shown in
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Figure 1 we see that the 10 position solution mechanism suffers Science Foundation grants MSS-9396265(Ge) and DMI-

from order defect (the positions are reached in the order: 1-6,
10, 9, 8, 7). However, the 37 position solution mechanism does
not suffer from order defect. The additional 27 positions may be

9612062(Larochelle).

viewed as nine sets of 3 positions, each of these sets being usedREFERENCES

to describe the desired coupler motion between two of the orig-

5

Copyright 0 1998 by ASME



Mechanism Link Parameters

Length (deg)

Link 10 Positions| 37 Positions
DRIVING 14157 39.55
COUPLER 12515 10084

DRIVEN 4412 34.91
FIXED 67.76 96.11
Table 1. Spherical 4R Synthesis: Design Results
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