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ABSTRACT
In this work we bring together classical mechanism theo

with recent works in the area of Computer Aided Geometric D
sign(CAGD) of rational motions as well as curve approximatio
techniques in CAGD to study the problem of mechanism m
tion approximation from a computational geometric viewpoin
We present a framework for approximating algebraic motions
spherical mechanisms with rational B-Spline spherical motion
Algebraic spherical motions and rational B-spline spherical m
tions are represented as algebraic curves and rational B-Sp
curves in the space of quaternions (or the image space). T
the problem of motion approximation is transformed into a curv
approximation problem, where concepts and techniques in
field of Computer Aided Geometric Design and Computation
Geometry may be applied. An example is included at the end
show how a NURBS motion can be used for synthesizing sph
ical four-bar linkages.

1 INTRODUCTION
Non-Uniform Rational B-Splines, commonly referred to a

NURBS, have become the de facto industry standard for the r
resentation, design, and data exchange of geometric informa
processed by computers. Recently, it has become apparent
NURBS geometry can be extended to kinematic domain for sy
thesizing NURBS motions of rigid bodies in Euclidean three
space (Ge and Ravani, 1994; J¨uttler, 1994; J¨uttler and Wagner,
1996; Ge and Kang, 1996; Ge et al., 1997). The purpose
the present paper is to present a framework for algebraic mot
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approximation using spherical NURBS motion by combining
NURBS geometry with kinematic geometry of spherical mech
anisms. From the viewpoint of mechanism synthesis, the ide
presented in this paper are extensions of the work of Gupta a
Roth (1975) on kinematic approximation of circles and straigh
lines, the series of work of Ravani and Roth (1983, 1984), Bod
duluri and McCarthy (1992), Larochelle and McCarthy (1994
on algebraic motion synthesis using kinematic mapping, as we
as the work of Liu and Angeles (1992a, 1992b) on plannin
global properties of a mechanism motion for optimization o
function generating mechanisms.

The paper is organized as follows. Section 1 reviews ho
spherical displacements can also be represented projectively
ing homogeneous quaternions. Section 2 presents spherical ra
nal Bézier and B-spline motions as B´ezier and B-spline quater-
nion curves. Section 3 presents algebraic motions of spheric
mechanisms. Section 4 discusses three motion approximat
problems and presents an example to demonstrate the feasib
of our approach.

2 SPHERICAL DISPLACEMENTS

Quaternion algebra allows for an elegant treatment fo
spherical kinematics (Yang and Freudenstein, 1964; Ravani a
Roth, 1984; Bottema and Roth, 1990; McCarthy, 1990). A
quaternion is a hypercomplex number of the formq= q1i+q2j +
q3k+q4 wherei; j ;k are quaternion units. The componentsqi are
Copyright  1998 by ASME
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known asEuler parametersof rotation and are given by

q1 = s1sin θ
2; q2 = s2sin θ

2; q3 = s3sin θ
2; q4 = cosθ

2; (1)

wheres= (s1;s2;s3) is the unit vector along the axis of rotatio
andθ is the angle of rotation. Note that the Euler parame
satisfy the condition

q2
1+q2

2+q2
3+q2

4 = 1; (2)

and the corresponding quaternion is called a unit quaternio
general, however, one can define a non-unit quaternion u
the homogeneous Euler parameters,Q= (Q1;Q2;Q3;Q4), where
Qi = vqi with v> 0.

Let the location of a point in Euclidean three-spaceE3

before and after a spherical displacement be represente
homogeneous Cartesian vectorsp = (p1; p2; p3; p4) and p̃ =

(p̃1; p̃2; p̃3; p̃4), respectively. These homogeneous vectors de
points in projective three-spaceP3. One can associate these ve
tors with quaternions as well, which maybe referred to aspoint
quaternions. The point coordinate transformation under a sph
ical displacement can be represented by the following quater
product:

p̃ = QpQ� (3)

whereQ� denotes the conjugate of the rotation quaternionQ and
p̃, p are point quaternions1. The quaternion representation c
be recast in 4�4 matrix form as

p̃ = [H(Q)]p (4)

where

[H(Q)] = [Q+][Q�

]

with (see McCarthy, 1990; Ge, 1994)

[Q+] =

2
6664

Q4�Q3 Q2Q1

Q3 Q4�Q1Q2

�Q2 Q1 Q4Q3

�Q1�Q2�Q3Q4

3
7775 ; [Q�

] =

2
6664

Q4�Q3 Q2�Q1

Q3 Q4�Q1�Q2

�Q2 Q1 Q4�Q3

Q1 Q2 Q3 Q4

3
7775 :

(5)

1Note that we use boldface letters to denote both quaternions and vecto
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Two rotation quaternions,Q = vq andq, represent one and
the same rotation since

[H(Q)] = [H(vq)] = v2
[H(q)]:

The scalarv can thus be considered as a weighting factor for the
rotation. Ravani and Roth (1984) considered the homogeneo
Euler parametersQ= vq as defining a point in a projective three-
space, called theimage space(denoted asΣ) of spherical kine-
matics. In this way, an algebraic curve inΣ corresponds to an
algebraic motion and a polynomial curve inΣ corresponds to a
rational motion.

It is important to point out that although points inE3 as well
as spherical displacements can be represented by points in p
jective three-space, the geometry ofP3 is considered to be flat
while the geometry ofΣ is considered to be spherical or elliptic.
For example, the distance between two pointsQi andQi+1 in Σ
is defined as the angle between the two lines defined byQi and
Qi+1, see Martinez and Duffy (1995) and Larochelle and Mc-
Carthy (1996).

3 SPHERICAL NURBS MOTIONS
Rational Bézier and B-spline curves, also known as

NURBS2 are standard topics in the field of Computer Aided Ge-
ometric Design (Farin, 1993). In this section, we consider the
problem of defining a spherical motion such that its point trajec
tory is a spherical NURBS curve. The resulting motion is called
aspherical NURBS motion. We first consider the case of rational
Bézier spherical motions. We then discuss how the result can b
extended to rational B-spline spherical motions.

Given a sequence of unit quaternionsqi as well as associated
weightsvi > 0, one can construct homogeneous quaternions b
Qi = viqi . Note that in order to take care of the problem that
bothqi and�qi correspond to the same spherical displacemen
we choose the sign ofqi such thatqi �qi+1� 0 where the symbol
“ �” represents the usual vector dot product. A B´ezier quaternion
curve of degreen is given by

Qn
(t) =

n

∑
i=0

Bn
i (t)Qi: (6)

The quaternionsQi are here referred to asBézier control quater-
nions. The Bézier polygon defined by the B´ezier quaternions is
an intrinsic control structure for the resulting motion. The con-
trol structure corresponds to a piecewise rotational motion3.

2Non-Uniform Rational B-Splines.
3Each motion segment is a pure rotation about a fixed axis.
Copyright  1998 by ASME
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After substituting (6) into (3), we obtain the point trajector
of the corresponding motion as

p̃2n
(t) =

n

∑
i=0

n

∑
j=0

Bn
i (t)B

n
j (t)QipQ�

j : (7)

The point trajectory can also be put in B´ezier form as

p̃2n
(t) =

2n

∑
k=0

B2n
k (t)ak (8)

where Bézier control pointsak are

ak =
1

C2n
k

∑
i+ j=k

Cn
i Cn

j QipQ�

j (9)

andCn
i are binomial coefficients. Thus a B´ezier quaternion curve

of degreen defines a rational B´ezier spherical motion of degree
2n, for its point trajectories are rational B´ezier curves of degree
2n.

Writing the Bézier control pointsak in matrix form, we ob-
tain

ak = [Hk]p (10)

where

[Hk] =
1

C2n
k

∑
i+ j=k

Cn
i Cn

j [Q
+

i ][Q
�

j ]: (11)

This leads to the following matrix representation of the ration
Bézier motion as defined by the B´ezier quaternion curve (6):

[H2n
(t)] =

2n

∑
k=0

B2n
k (t)[Hk]: (12)

Thus the matrices[Hk] may be referred to asBézier control ma-
trices. These matrices are in general not orthogonal and th
represent affine displacements. They define an affine (or line
control structure for the rational B´ezier motion. The linear con-
trol structure for rational B´ezier motions was first presented b
Jüttler and Wagner (1996). The set of(2n+ 1) Bézier control
matrices[Hk] are defined by(n+ 1) Bézier control quaternions
Qi .
3
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A nth degree B-spline quaternion curve is given by

Qm
(t) =

m

∑
i=0

Nn
i (t)Qi ; (13)

with Nn
i (t) being the B-spline basis. It is not difficult to show th

the point trajectories of the resulting motion are rational B-spl
spherical curves of degree 2n. Therefore a B-spline quaternio
curve of degreen defines a rational B´ezier spherical motion o
degree 2n. In producing an example for this paper, we ha
utilized cubic B-spline quaternion curves which have a pie
wise Bézier form. The standard algorithm for converting the d
Boor points to the B´ezier points is directly applicable to B-splin
quaternion curves. The algorithm can also be inverted for cu
rational B-spline interpolation. These algorithms can be foun
CAGD texts such as Farin (1993) and Piegl and Tiller (1995)

4 ALGEBRAIC SPHERICAL MOTIONS
Let us consider a spherical motion of the moving body su

that two points,p1 andp2, of the body trace out two separa
algebraic curves on the surface of a unit sphere inE3. These
algebraic curves are given by the following algebraic equatio

fi(p̃i ; r i) = 0; i = 1;2; (14)

wherer i denote the coefficients or shape parameters of the a
braic curvefi = 0. The equationsfi = 0 are homogeneous inpi ,
i.e. we havefi(zp̃i) = zki fi(p̃i) wherez is a nonzero scalar andki

is an integer. Substituting (4) into (14), we obtain the followi
two homogeneous equations inQ:

Fi(Q;pi ; r i) = 0; i = 1;2 (15)

Each of the two equations defines an algebraic surface in the
age spaceΣ and represents the set of all possible spherical
placements that satisfy the algebraic constraint (14). The in
section of the two surfaces defines an algebraic quaternion c
in Σ. This algebraic quaternion curve corresponds to an algeb
spherical motion such that any point of the moving body tra
out an algebraic path.

For instance, the quaternion curve representing a sp
ical four-bar motion can be defined this way. Letpi =

(pi;1; pi;2; pi;3; pi;4) be the homogeneous vector representing
locations of the moving pivots on the moving unit sphere, and
mi = (mi;1;mi;2;mi;3;mi;4) be homogeneous vector representi
the locations of the fixed pivots on the fixed unit sphere. Leρi

denote the angular lengths of the driving and driven links. T
Copyright  1998 by ASME
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moving pivots are required to stay on circular paths, which
given by

fi = pi;1mi;1+ pi;2m1;2+ pi;3mi;3� pi;4mi;4 cosρi = 0; i = 1;2:
(16)

The corresponding quaternion surfaces inΣ are given by the fol-
lowing homogeneous quadric equations

QT
[Fi(pi ;mi)]Q = 0; i = 1;2; (17)

where the coefficient matrices[Fi(pi ;mi)] are given by

[Fi ] =

2
664

pi;1mi;1�pi;2mi;2�pi;3mi;3�pi;4mi;4cosρi

pi;2mi;1+pi;1mi;2

pi;3mi;1+pi;1mi;3

pi;2mi;3�pi;3mi;2

pi;2mi;1+pi;1mi;2

�pi;1mi;1+pi;2mi;2�pi;3mi;3�pi;4mi;4cosρi

pi;3mi;2+pi;2mi;3

pi;3mi;1�pi;1mi;3

pi;3mi;1+pi;1mi;3

pi;3mi;2+pi;2mi;3

�pi;1mi;1�pi;2mi;2+pi;3mi;3�pi;4mi;4cosρi

pi;1mi;2�pi;2mi;1

pi;2mi;3�pi;3mi;2

pi;3mi;1�pi;1mi;3

pi;1mi;2�pi;2mi;1

pi;1mi;1+pi;2mi;2+pi;3mi;3�pi;4mi;4cosρi

3
775 :

(18)

The intersection of these two surfaces inΣ is the image curve
of a spherical four-bar motion. The curve is a quartic algebr
curve of the first kind and the topological structure of the curve
directly related to the linkage type such as Grashof, non-Gras
foldable linkages (Ge and McCarthy, 1991; Chase and Mi
1993).

5 ALGEBRAIC MOTION APPROXIMATION
In the image spaceΣ, the kinematic problem of algebrai

motion approximation becomes a geometric problem of cu
fitting in Σ. In this section, we discuss the following three pro
lems related to algebraic motion approximation:

1. Approximation of a given spherical four-bar motion with
NURBS motion;

2. Approximation of a NURBS motion with a spherical fou
bar motion;

3. Constrained NURBS motion approximation. The NURB
motion is required to fit a set of given spherical displac
ments while maintaining the kinematic structure of a sph
ical four-bar motion.
4

f,

All three problems can be solved as curve-fitting problems in th
Image SpaceΣ.

Essential to the motion approximation process is the estim
tion of the approximation error between the NURBS motion an
the four-bar motion. There are two ways to estimate the error
the image spaceΣ. One is to calculate a sequence of points o
the B-spline quaternion curve and then estimate the normal d
tance from each point to the image curve of a spherical four-b
motion. Calculation of a sequence of points on a B-spline curv
is a routine task in computer graphics for rendering the curv
It can be done efficiently and reliably. The problem of calculat
ing the normal distance from a point to the image curve is mor
challenging but has been effectively solved by Ravani and Ro
(1983, 1984). The resulting algebraic curve-fitting technique ha
been refined and extended by Bodduluri and McCarthy (1992
Ge and Ravani (1993), and Larochelle and McCarthy (1994).

Another way to estimate the approximation error is to gen
erate a sequence of points on the image curve of the four-bar m
tion and then estimate the normal distance from each point to t
B-spline quaternion curve. Calculation of a sequence of poin
on an algebraic curve is in general more difficult than that for
parametric curve due to the algebraic form as well as the topolo
ical structure (such as possible multiple branches and self inte
sections) of the algebraic curve (Arnon, 1983). In the case of th
image curve of a spherical mechanism’s motion, the problem
calculating a sequence of points on the curve is equivalent to t
position analysis of the mechanism motion and can be solved u
ing the loop-closure equations of the mechanism (see McCarth
1990). Once a sequence of image points has been generated,
can take advantage of the convex-hull and subdivision proper
of a B-spline curve to develop reliable and efficient methods fo
estimating the error. Since the metric geometry ofΣ is spherical
“flat” algorithms in CAGD for distance calculation have to be
modified to take into account the geometry ofΣ.

The solution to the first problem would provide anapproxi-
mate piecewise rational parameterizationfor algebraic motions
of a spherical four-bar. This problem can be solved with a num
ber of NURBS curve fitting techniques in CAGD including in-
terpolation and approximation (see Chapter 9 of Piegl and Tille
1995).

In the second problem, we use a NURBS motion to plan
desired motion to include global properties such as a Grash
linkage or to eliminate order or branch defect problems. Liu an
Angeles (1992a, 1992b) were probably the first who used splin
curves to plan input-output curves for optimization of function
generating mechanisms. Since the topological structure of an
gebraic quaternion curve of a spherical four-bar motion has be
classified and has been shown to be directly related the linka
type, one can plan a NURBS motion to capture desired top
logical structure of a desired four-bar motion. After a B-spline
quaternion curve has been planned, one can obtain an appr
imating algebraic quaternion curve using the curve-fitting tech
Copyright  1998 by ASME
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nique developed by Ravani and Roth and refined by McCart
Bodduluri, and Larochelle.

The quality of the above approximation is expected to be d
pendent on the shape of the given NURBS spherical motion. T
is because while NURBS curves are free-form curves that can
used to model any curve shape, the image curve of a spher
four-bar is constrained by the kinematic structure of a four-b
closed-chain. This gives rise to the third problem in algebra
motion approximation, i.e. how to fit a small number of da
points with a NURBS motion while maintaining the kinemati
constraints of a four-bar motion. This problem may be solved
first finding a NURBS motion that fits the given data with mor
control points than necessary and then determining the extra c
trol points such that the final NURBS curve fits the kinemat
constraints of a four-bar motion.

Figure 1. A spherical four-bar linkage that approximates a set of 10

spherical displacements.

We now present an example that demonstrates the feas
ity of our approach. First, we synthesize a spherical four-b
that approximates ten coupler positions. The resulting linka
is a non-Grashof double rocker with an average position er
of 0:0039 and is shown in Figure 1. We then used a NURB
motion to interpolate the 10 coupler positions and generated
coupler positions on the NURBS motion and designed a me
anism for these 37 positions. The resulting mechanism, sho
in Figure 2, is a non-Grashof double rocker with an average
sition error of 0:0062. Link lengths for both solutions are liste
in Table 1. Note that by examining the coupler curve shown
Figure 1 we see that the 10 position solution mechanism suff
from order defect (the positions are reached in the order: 1
10, 9, 8, 7). However, the 37 position solution mechanism do
not suffer from order defect. The additional 27 positions may
viewed as nine sets of 3 positions, each of these sets being u
to describe the desired coupler motion between two of the or
5
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Figure 2. A spherical four-bar linkage that approximates a set of 37

spherical displacements.

inal positions. For example, in the 37 position case, positio
2� 4 describe the desired motion from position 1 to position
of the 10 original positions. The result is the elimination of th
order defect in this example.

CONCLUSIONS
In this paper we presented a framework for combining

cent developments in the fields of Computer Aided Geom
ric Design with classical kinematic geometry of spherical m
tions and mechanisms to study the problem of spherical m
tion approximation from a computational geometric viewpoin
A quaternion-based representation of spherical displacemen
used to transform the kinematic problem of motion synthesis i
a geometric problem of curve design. In this way, algebr
motions of spherical mechanisms are represented by algeb
quaternion curves and NURBS spherical motions are represe
by B-spline quaternion curves. The problem of algebraic mot
approximation is studied as that of algebraic curve approxim
tion in the space of quaternions. The initial ideas presented h
forms a basis for future research in developing computation
geometric methods for mechanism design and analysis.
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Mechanism Link Parameters

Length (deg)

Link 10 Positions 37 Positions

DRIVING 141:57 39:55

COUPLER 125:15 100:84

DRIVEN 44:12 34:91

FIXED 67:76 96:11
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